Diabetes and Alzheimer's disease: Animal model study

Sun Ah Park M.D., Ph.D.

Neurology Dept. Soonchunhyang University

Suggested Common Pathogenesis

◆Insulin deficiency
◆Insulin resistance
◆Impaired glucose metabolism
◆AGEs and oxidative stress
◆↑FFA → inflammation and oxidative stress
◆ Hypercholesterolemia → ↑caveolae and lipid rafts

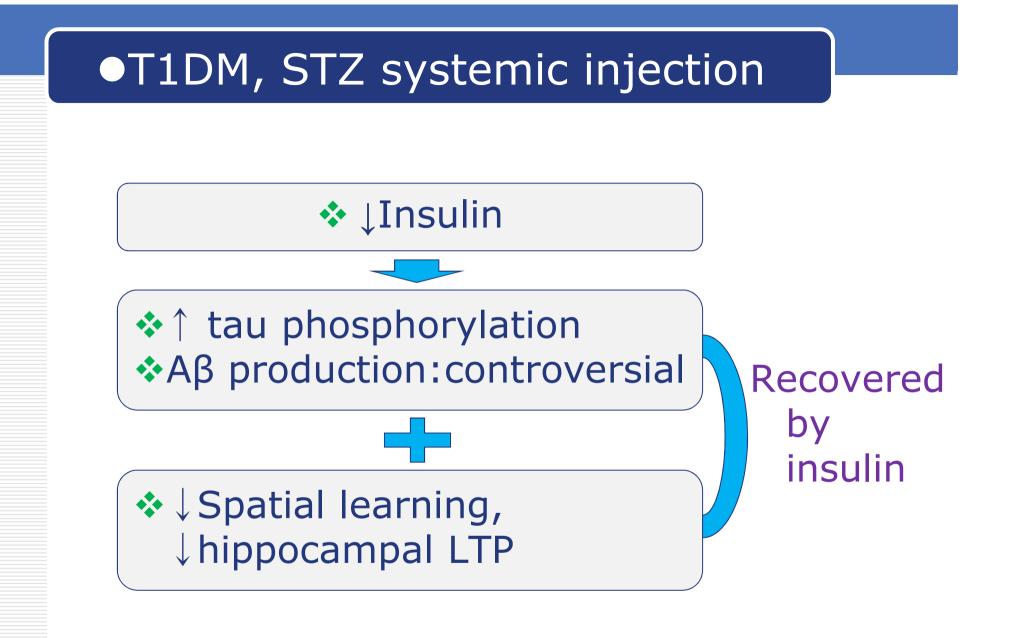
Studies using DM model

✤Type I DM

- STZ injection model: ip, icv
- Spontaneous T1DM model
 - BB/Wor rat
- ✤Type II DM
 - Spontaneous T2DM model
 - db/db mouse, BBZDR/Wor rat
- Insulin signaling genetic model
 - IDE KO
 - Irs2 KO
 - Neuron-specific IR KO

Studies using AD model

APP mutation model


- TG2576 mouse (APP K670N/M671L) taking high lipid diet
- TG2576 mouse injected STZ (i.c.v.)

Tau mutation model

• pR5 (p301L) taking STZ (i.p.)

Cross mating

- APP23 ob/ob (leptin deficient) mouse
- APP23 NSY (polygenic T2DM) mouse

•STZ intraventricular injection

STZ act to GLUT2 in the brain, small and heterogenous

↔→ IR, IGF-1R ↔↓pPI-3K, pERK-1, pGSK-3β ↔↓GLUT-3, Glucose metabolism ↔↓O-GlcNAcylation

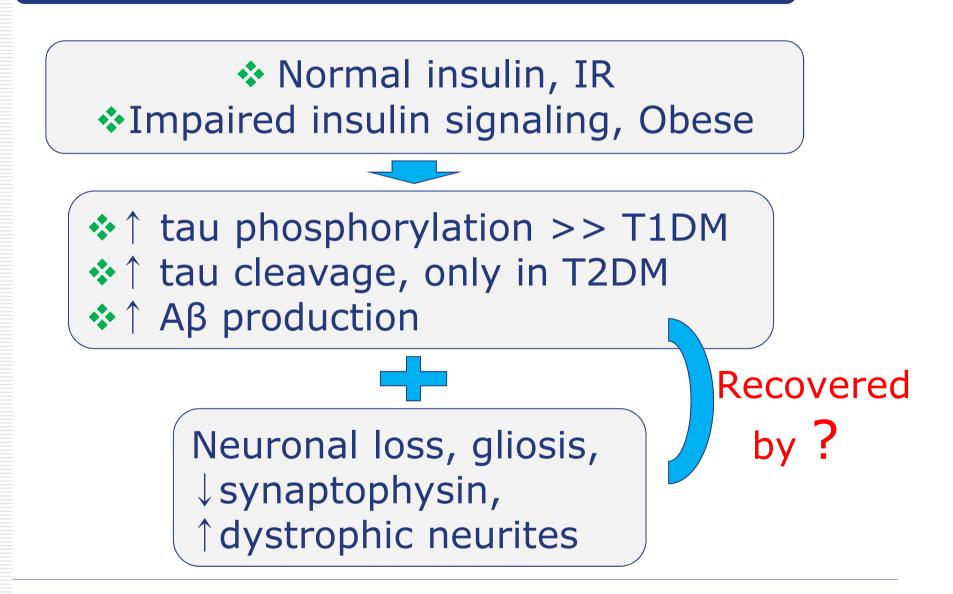
♦ p-tau, ↑p-NF, ↓MT binding activity
 ♦ NF degeneration
 ♦ Aβ production:? ↑congo-red+
 aggregates in the capillaries

♦ ↓ Spatial learning

•T1DM, spontaneous

BB/Wor rat

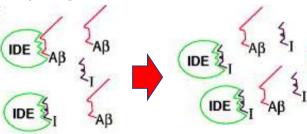
Progressive impaired cognitive function
 Insulin, IGF-1 action, neuronal apotosis

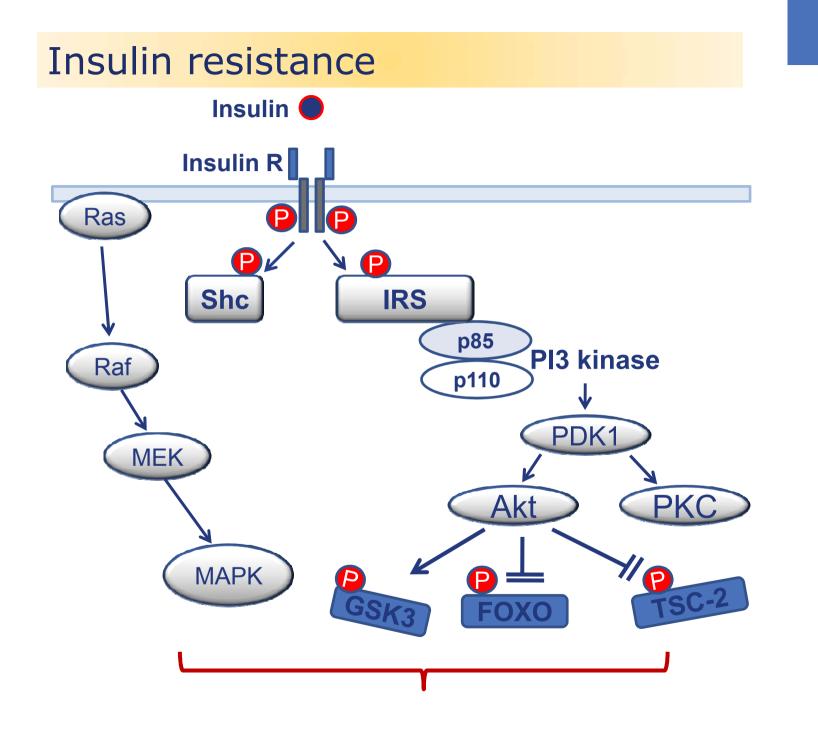

Reversed by insulinomimetic C-peptide

•T2DM, spontaneous

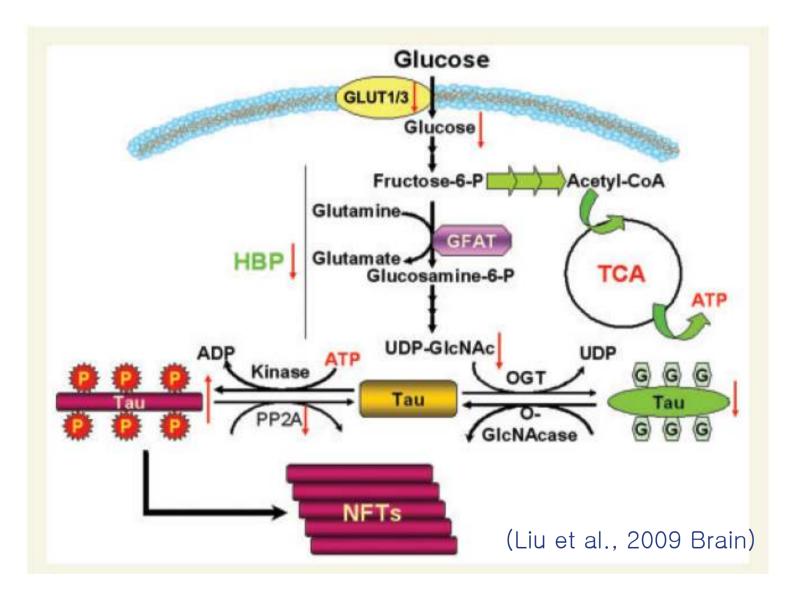
- BBDZR/Wor, diminished GLUT2 transporters, obesity and insulin resistance
- ♦ Neuronal loss, gliosis, ↓synaptophysin, ↑ dystrophic neurites
- \clubsuit Normal IR- β but \downarrow IGF-1R β and \downarrow p-Akt
- * \uparrow p-tau, \uparrow APP, \uparrow β-secretase, \uparrow Aβ

Db/db mouse, point mutation in *leptin* gene


●T2DM


Insulin deficiency

- + effect of insulin
- Memory
- Regulate synapse, trophic factor
- Improve cognition
- Intranasal insulin trial


- effect of insulin
- ♦ Hyperinsulinemia → ↑Aβ42 & Inflm cytokines
- ◆IDE deficiency → ↓Aβ42 clearance

Optimal dosage!

Impaired glucose metabolism

AGEs and others

◆AGEs and oxidative stress ◆↑FFA → inflammation and oxidative stress ◆Hypercholesterolemia → ↑caveolae and lipid rafts

•Insulin signaling animal model

IDE-/-

Hyperinsulinemia and Glucose intolerance

+ A β degradation

 $\clubsuit\uparrow$ Cerebral accumulation of endogenous AB

Irs2-/- \uparrow tau phosphorylation at Ser202 \rightarrow \uparrow cytoplasmic deposits \rightarrow but not resulting in cell death ...? Significance

Tg2576/Irs2-/-, Rather

- ♣↓ Amyloid deposit
- Behavioral <u>improvement</u> on fear memory

NIRKO mice

- ❖↓↓↓ PI-3K, p-Akt, GSK3β★↑ tau phosphorylation at Thr231 but not at Ser202
 - No change in neuronal survival and memory on MWZ, open field test, and PET

Additional mechanism should be present!

•in APP mutation model

TG2576 fed high fat diet

◆Greater insulin level and obesity◆↓Tyr P-IR, p-PI3K, p-Akt, IDE

*2x \uparrow Aβ40 & 42, \uparrow γ-secretase * \downarrow p-GSK α and β , correlate with γ -CTF

Water maze spatial learning

TG2576 injected STZ icv

- $\clubsuit\downarrow$ Spatial cognition
- ♦↑ total tau and \downarrow p-tau fraction
- No marked necrotic and apoptotic changes
- Linear negative correlation
- between Aβ42 and cognition,
- between GSK- $3\alpha/\beta$ and aggregated A β

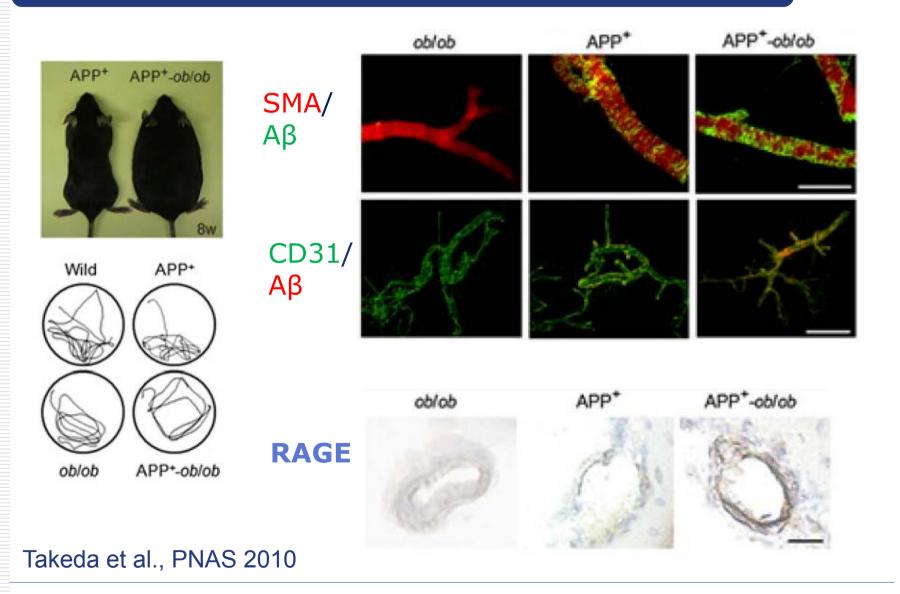
•in Tau mutation model

P301L tau mutation, STZ injection

tau phosphorylation, 1 soluble tau
Aggregation and NFT formation

But no behavior evidence

in 3xTg-AD mouse


STZ exposure

- $\bigstar \uparrow Soluble A\beta$
- Reversed by long-acting analogue exendin-4 (Ex-4) = GLP-1 receptor stimulator

•Cross mating

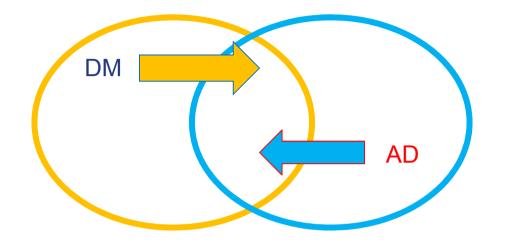
APP23 (APPsw mutant)-ob/ob

- Greater Hyperglycemia, Hyperinsulinemia, Glucose intolerance, Hyperlipidemia, ↓pAkt
- Only faint amyloid plaques in Ent both in APP or APP-ob/ob at 12M
- dense amyloid deposits in small arteries,
- RAGE in blood vessels, 1 infl molecules
- ↓brain volume, Early learning deficit

•Treatment evidence

In 6M TgCRND8 (double APP mutation)→ leptin treatment for 8 weeks

- \downarrow A β 40, \downarrow amyloid burden, \downarrow C99-CTF, \downarrow β -secretase activity
- ■↓ p-tau


 Cognitive function in object recognition and fear conditioning

Rosiglitazone for 4 months in 13M old J20 APP mutation mouse

- $\uparrow A\beta$ clearance, $\downarrow A\beta$ aggregation, $\downarrow A\beta$ oligomer
- ■↓Neuropil threat
- ■↓proinflammatory markers
- Object recognition and spatial memory

SUMMARY

- Multiple factors are involved in linking DM and AD, not solitary one
 - Insulin deficiency
 - Insulin resistance, Impaired glucose metabolism
 - AGEs, [↑]FFA, inflammation and oxidative stress, Hypercholesterolemia
- ♦ What is the significance of ↑pTau?
- \clubsuit Evidence of effect of DM on AB is weak

◆ Can AD itself sufficiently result in T2DM?
◆ Can T2DM itself sufficiently result in AD?
◆ At least, AD and DM aggravate each other
→ modulation both at the same time will be beneficial

Thank you for your attention!